Demo

Member of Technical Staff, Performance Optimization

fireworksai
San Mateo, CA Full Time
POSTED ON 1/2/2026
AVAILABLE BEFORE 3/2/2026

About Us:

At Fireworks, we’re building the future of generative AI infrastructure. Our platform delivers the highest-quality models with the fastest and most scalable inference in the industry. We’ve been independently benchmarked as the leader in LLM inference speed and are driving cutting-edge innovation through projects like our own function calling and multimodal models. Fireworks is a Series C company valued at $4 billion and backed by top investors including Benchmark, Sequoia, Lightspeed, Index, and Evantic. We’re an ambitious, collaborative team of builders, founded by veterans of Meta PyTorch and Google Vertex AI.

The Role: 

We're looking for a Software Engineer focused on Performance Optimization to help push the boundaries of speed and efficiency across our AI infrastructure. In this role, you'll take ownership of optimizing performance at every layer of the stack—from low-level GPU kernels to large-scale distributed systems. A key focus will be maximizing the performance of our most demanding workloads, including large language models (LLMs), vision-language models (VLMs), and next-generation video models.

You’ll work closely with teams across research, infrastructure, and systems to identify performance bottlenecks, implement cutting-edge optimizations, and scale our AI systems to meet the demands of real-world production use cases. Your work will directly impact the speed, scalability, and cost-effectiveness of some of the most advanced generative AI models in the world.

Key Responsibilities:

  • Optimize system and GPU performance for high-throughput AI workloads across training and inference
  • Analyze and improve latency, throughput, memory usage, and compute efficiency
  • Profile system performance to detect and resolve GPU- and kernel-level bottlenecks
  • Implement low-level optimizations using CUDA, Triton, and other performance tooling
  • Drive improvements in execution speed and resource utilization for large-scale model workloads (LLMs, VLMs, and video models)
  • Collaborate with ML researchers to co-design and tune model architectures for hardware efficiency
  • Improve support for mixed precision, quantization, and model graph optimization
  • Build and maintain performance benchmarking and monitoring infrastructure
  • Scale inference and training systems across multi-GPU, multi-node environments
  • Evaluate and integrate optimizations for emerging hardware accelerators and specialized runtimes

Minimum Qualifications:

  • Bachelor’s degree in Computer Science, Computer Engineering, Electrical Engineering, or equivalent practical experience
  • 5 years of experience working on performance optimization or high-performance computing systems
  • Proficiency in CUDA or ROCm and experience with GPU profiling tools (e.g., Nsight, nvprof, CUPTI)
  • Familiarity with PyTorch and performance-critical model execution
  • Experience with distributed system debugging and optimization in multi-GPU environments
  • Deep understanding of GPU architecture, parallel programming models, and compute kernels

Preferred Qualifications:

  • Master’s or PhD in Computer Science, Electrical Engineering, or a related field
  • Experience optimizing large models for training and inference (LLMs, VLMs, or video models)
  • Knowledge of compiler stacks or ML compilers (e.g., torch.compile, Triton, XLA)
  • Contributions to open-source ML or HPC infrastructure
  • Familiarity with cloud-scale AI infrastructure and orchestration tools (e.g., Kubernetes, Ray)
  • Background in ML systems engineering or hardware-aware model design

Example projects:

  • Implement fully asynchronous low-latency sampling for large language models integrated with structured outputs
  • Implement GPU kernels for the new low-precision scheme and run experiments to find optimal speed-quality tradeoff
  • Build a distributed router with a custom load-balancing algorithm to optimize LLM cache efficiency
  • Define metrics and build harness for finding optimal performance configuration (e.g. sharding, precision) for a given class of model
  • Determine and implement in PyTorch an optimal sharding scheme for a novel attention variant
  • Optimize communication patterns in RDMA networks (Infiniband, RoCE)
  • Debug numerical instabilities for a given model for a small portion of requests when deployed at scale

Total compensation for this role also includes meaningful equity in a fast-growing startup, along with a competitive salary and comprehensive benefits package. Base salary is determined by a range of factors including individual qualifications, experience, skills, interview performance, market data, and work location. The listed salary range is intended as a guideline and may be adjusted.

Base Pay Range (Plus Equity)

$175,000 - $220,000 USD

Why Fireworks AI?

  • Solve Hard Problems: Tackle challenges at the forefront of AI infrastructure, from low-latency inference to scalable model serving.
  • Build What’s Next: Work with bleeding-edge technology that impacts how businesses and developers harness AI globally.
  • Ownership & Impact: Join a fast-growing, passionate team where your work directly shapes the future of AI—no bureaucracy, just results.
  • Learn from the Best: Collaborate with world-class engineers and AI researchers who thrive on curiosity and innovation.

Fireworks AI is an equal-opportunity employer. We celebrate diversity and are committed to creating an inclusive environment for all innovators.

Salary : $4

If your compensation planning software is too rigid to deploy winning incentive strategies, it’s time to find an adaptable solution. Compensation Planning
Enhance your organization's compensation strategy with salary data sets that HR and team managers can use to pay your staff right. Surveys & Data Sets

What is the career path for a Member of Technical Staff, Performance Optimization?

Sign up to receive alerts about other jobs on the Member of Technical Staff, Performance Optimization career path by checking the boxes next to the positions that interest you.
Income Estimation: 
$115,390 - $147,559
Income Estimation: 
$136,671 - $177,110
Income Estimation: 
$128,093 - $158,900
Income Estimation: 
$176,149 - $220,529
Income Estimation: 
$156,679 - $196,968
Income Estimation: 
$77,657 - $95,021
Income Estimation: 
$97,257 - $120,701
Income Estimation: 
$97,257 - $120,701
Income Estimation: 
$123,167 - $152,295
Income Estimation: 
$123,167 - $152,295
Income Estimation: 
$146,673 - $180,130
View Core, Job Family, and Industry Job Skills and Competency Data for more than 15,000 Job Titles Skills Library

Job openings at fireworksai

  • fireworksai Redwood, CA
  • About Us: Here at Fireworks, we’re building the future of generative AI infrastructure. Fireworks offers the generative AI platform with the highest-qualit... more
  • 14 Days Ago

  • fireworksai Redwood, CA
  • About Us: Here at Fireworks, we’re building the future of generative AI infrastructure. Fireworks offers the generative AI platform with the highest-qualit... more
  • 14 Days Ago

  • fireworksai York, NY
  • About Us: Here at Fireworks, we’re building the future of generative AI infrastructure. Fireworks offers the generative AI platform with the highest-qualit... more
  • 15 Days Ago

  • fireworksai York, NY
  • About Us: At Fireworks, we’re building the future of generative AI infrastructure. Our platform delivers the highest-quality models with the fastest and mo... more
  • 5 Days Ago


Not the job you're looking for? Here are some other Member of Technical Staff, Performance Optimization jobs in the San Mateo, CA area that may be a better fit.

  • Fireworks AI San Mateo, CA
  • About Us: At Fireworks, we’re building the future of generative AI infrastructure. Our platform delivers the highest-quality models with the fastest and mo... more
  • 6 Days Ago

  • Embedding VC San Mateo, CA
  • Introducing Moonlake, AI for creating real-time interactive content Mission: Improve Throughput, Latency, & Cost - deploying our models 2–10× faster & chea... more
  • 4 Days Ago

AI Assistant is available now!

Feel free to start your new journey!